
© 2003 by Carnegie Mellon University page 1

Advances in the Art of Software
Development

Linda Northrop
Director, Product Line Systems

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

This work is sponsored by the U.S. Department of Defense.

Presentation for

The Naval Industry R&D Partnership
Conference 2003

Aug 6, 2003

© 2003 by Carnegie Mellon University page 2

Presentation Outline
Background

Software Architecture

Software Architecture Practices

Related Innovative Practices

SEI Software Architecture Support

Conclusion

Discussion

© 2003 by Carnegie Mellon University page 3

SEI’s Strategic Functions

DIRECT
SUPPORT

AMPLIFY

TRANSITION

APPLY

IDENTIFY
AND MATURE

SEI’s
experience

TECHNOLOGY

CREATE

DoD needs

User’s experience
Technology
trends

© 2003 by Carnegie Mellon University page 4

SEI and the Community

CREATE APPLY AMPLIFY CREATE APPLY

AMPLIFY CREATE APPLY AMPLIFY CREATE

APPLY AMPLIFY CREATE APPLY AMPLIFY

CREATE APPLY AMPLIFY CREATE APPLY

AMPLIFY CREATE APPLY AMPLIFY CREATE

APPLY AMPLIFY CREATE APPLY AMPLIFY

CREATE APPLY AMPLIFY CREATEAPPLY

DEVELOPERS

ACQUIRERS

RESEARCHERS

© 2003 by Carnegie Mellon University page 5

Product Line Systems Program
Our Goal: To enable widespread product line
practice through architecture-centric
development

© 2003 by Carnegie Mellon University page 6

Our Strategy

Software Architecture
(Architecture Tradeoff Analysis Initiative)

Software Product Lines
(Product Line Practice Initiative)

Component Technology
(Predictable Assembly from Certifiable
Components Initiative)

© 2003 by Carnegie Mellon University page 7

Software Today

Software is pervasive in today’s Navy systems and
business operations.

Poor quality software is the root cause of cost,
schedule, and quality deficiencies observed in vast
numbers of delivered systems.

High quality software is key to future system and
mission success.

© 2003 by Carnegie Mellon University page 8

Software Strategies Are Needed

Business/Mission Goals

Process
Improvement

Improved
Architecture

Practices

process
quality

product
quality

System
(Software)
Strategies

© 2003 by Carnegie Mellon University page 9

Focus: Software Architecture
The quality and longevity of a software system is largely
determined by its architecture.

Too many experiences point to inadequate software
architecture education and practices in the DoD and its
contractor base and the lack of any real software
architecture evaluation early in the life cycle.

Without an explicit course of action focused on software
architecture, these experiences are being and will be
repeated. The cost of inaction is too great to the DoD and
to the war fighter.

© 2003 by Carnegie Mellon University page 10

Presentation Outline
Background

Software Architecture

Software Architecture Practices

Related Innovative Practices

SEI Software Architecture Support

Conclusion

Discussion

© 2003 by Carnegie Mellon University page 11

Software Architecture: Common Ideas
A software architecture is a “first-cut” at designing the
system and solving the problem or fitting the need.

A software architecture is an ad hoc box-and-line
drawing of the system that is intended to solve the
problems articulated by the specification.
• Boxes define the elements or “parts” of the system.
• Lines define the interactions or between the parts.

© 2003 by Carnegie Mellon University page 12

Our Definition of Software
Architecture
“The software architecture of a program or
computing system is the structure or structures
of the system, which comprise software
elements, the externally visible properties of
those elements, and the relationships among
them.”

Bass L.; Clements P.; Kazman R. Software Architecture in Practice
2nd Edition Reading, MA: Addison-Wesley, 2003.

© 2003 by Carnegie Mellon University page 13

Implications of Our Definition
Software architecture is an abstraction of a system.

Software architecture defines the properties of elements.

Systems can and do have many structures.

Every software-intensive system has an architecture.

Just having an architecture is different from having an
architecture that is known to everyone.

If you don’t develop an architecture, you will get one
anyway – and you might not like what you get!

© 2003 by Carnegie Mellon University page 14

Why is Software Architecture Important?

Represents earliest design decisions

• hardest to change
• most critical to get right
• communication vehicle among

stakeholders

• performance • modifiability
First design artifact addressing • reliability • security

Key to systematic reuse • transferable, reusable abstraction

The right architecture paves the way for system success.
The wrong architecture usually spells some form of disaster.

© 2003 by Carnegie Mellon University page 15

Requirements Beget Design

Requirements
in various
forms

Available
knowledge System

Designer Architecture

© 2003 by Carnegie Mellon University page 16

Business/Mission Drivers
Mission
• capability
• flexibility

Business
• cost
• schedule

Technology
• evolution obsolesce
• standards, COTS

Constraints
• legacy systems
• mandated HW/SW/OS Languages

© 2003 by Carnegie Mellon University page 17

Software System Development

Functional
Software

Requirements

If function were all
that mattered, any
monolithic software
would do, ..but
other things
matter…

The important quality attributes and their characterizations are key.

• Modifiability
• Interoperability
• Availability
• Security
• Predictability
• Portability

:
has these qualities

Quality
Attribute
Drivers

Software
Architecture Software

analysis, design, development

© 2003 by Carnegie Mellon University page 18

The Reality About Software
Architecture.
Quality attribute requirements are the primary drivers for
architectural design.

The degree to which a system meets its quality attribute
requirements is dependent on architectural decisions.

Software development needs to be driven by architectural
decisions.

Architecture-centric development is key.

© 2003 by Carnegie Mellon University page 19

What Is Architecture-centric
Development?

Architecture-centric development involves
• Creating the business case for the system
• Understanding the requirements
• Creating or selecting the architecture
• Documenting and communicating the

architecture
• Analyzing or evaluating the architecture
• Implementing the system based on the

architecture
• Ensuring that the implementation

conforms to the architecture
• Maintaining the architecture

The architecture must be both
prescriptive and descriptive.

© 2003 by Carnegie Mellon University page 20

System Qualities and Software
Architecture

System
Specification

System Quality
Attributes*

Software
Architecture

drive

drives
System Capabilities

and
Software Quality

S
Y
S
T
E
M

determines level of quality

* Performance
Security
Interoperability
Reliability
Availability
etc.

© 2003 by Carnegie Mellon University page 21

Common Impediments to
Achieving Architectural Success
Lack of adequate architectural talent and/or experience.
Insufficient time spent on architectural design and analysis.
Failure to identify the quality drivers and design for them.
Failure to properly document and communicate the
architecture.
Failure to evaluate the architecture beyond the mandatory
government review.
Failure to understand that standards are not a substitute for a
software architecture.
Failure to ensure that the architecture directs the
implementation.
Failure to evolve the architecture and maintain documentation
that is current.
Failure to understand that a software architecture does not
come free with COTS or with the DoD Framework.

© 2003 by Carnegie Mellon University page 22

Challenges
What are the driving quality attributes for your system?

What precisely do these quality attributes such as
modifiability, security, performance, and reliability mean?

How do you architect to ensure the system will have its
desired qualities?

How do you document a software architecture?

How do you know if software architecture for a system is
suitable without having to build the system first?

Can you recover an architecture from an existing system?

© 2003 by Carnegie Mellon University page 23

SEI Work in Software Architecture:
Maturing Sound Architecture Practices
Starting Points

Quality attribute/
performance
engineering
Software Architecture
Analysis Method
(SAAM)
Security analysis
Reliability analysis
Software Architecture
Evaluation Best
Practices Report
Software architecture
evaluations

Create

Architecture tradeoff
analysis
• attribute-specific
patterns
• architecture
evaluation techniques
Architecture
representation
Architecture
definition
Architecture
reconstruction

© 2003 by Carnegie Mellon University page 24

Presentation Outline
Background

Software Architecture

Software Architecture Practices

Related Innovative Practices

SEI Software Architecture Support

Conclusion

Discussion

© 2003 by Carnegie Mellon University page 25

What Is Architecture-centric
Development?

Architecture-centric development involves
• Creating the business case for the system
• Understanding the requirements
• Creating or selecting the architecture
• Documenting and communicating the

architecture
• Analyzing or evaluating the architecture
• Implementing the system based on the

architecture
• Ensuring that the implementation

conforms to the architecture
• Maintaining the architecture

The architecture must be both
prescriptive and descriptive.

© 2003 by Carnegie Mellon University page 26

Traditional System Development
Operational descriptions

High level functional requirements
Legacy systems

New systems

Specific system architecture
Software architecture

Detailed design
Implementation

a miracle occurs

Quality attributes are rarely
captured in requirements
specifications.
• often vaguely understood
• often weakly articulated

© 2003 by Carnegie Mellon University page 27

Quality Attribute Workshop

The Quality Attribute Workshop (QAW) is a facilitated
method that engages system stakeholders early in the
lifecycle to discover the driving quality attributes of a
software intensive system.

Key points about the QAW are that it is
• system centric
• scenario based
• stakeholder focused
• used before the software architecture has been created

© 2003 by Carnegie Mellon University page 28

Quality Attribute Workshop Steps
1. Introductions and QAW Presentation

2. Business/Mission Presentation

3. Architecture Plan Presentation

4. Identify Architectural Drivers

5. Scenario Brainstorming

6. Scenario Consolidation

7. Scenario Prioritization

8. Scenario Refinement
Iterate as necessary with broader
stakeholder community

© 2003 by Carnegie Mellon University page 29

QAW Benefits and Next Steps

QAW
Quality
Attribute
Scenarios:
• raw
• prioritized
• refined

Update Architectural Vision
Refine Requirements
Create Prototypes
Exercise Simulations
Create Architecture

Potential Next Steps

Can be
used to

• Increased stakeholder communication
• Clarified quality attribute requirements
• Informed basis for architectural decisions
• Improved architecture documentation

Architecture
EvaluationPotential Benefits

© 2003 by Carnegie Mellon University page 30

Example Scenario Refinement

Scenario:
Business Goals:

Relevant
Quality
Attributes:
Questions:

Issues:

When garage door senses an obstacle, the system will
stop the door in 1 millisecond
reduced liability, competitive features

Homeowner

Safety, Performance.

How large do objects in the way of the closing door have to
be before they are detected?
Who will perform installation of the system?
Will we be liable if the system is installed improperly?
May have to train installers to prevent malfunctions and
associated legal issues.

Actors:
-Organizations
-Systems
-People

© 2003 by Carnegie Mellon University page 31

What Is Architecture-centric
Development?

Architecture-centric development involves
• Creating the business case for the system
• Understanding the requirements
• Creating or selecting the architecture
• Documenting and communicating the

architecture
• Analyzing or evaluating the architecture
• Implementing the system based on the

architecture
• Ensuring that the implementation

conforms to the architecture
• Maintaining the architecture

The architecture must be both
prescriptive and descriptive.

© 2003 by Carnegie Mellon University page 32

Creating the Software Architecture

There are architecture definition methods and guidelines,
many of which focus exclusively on the functional
requirements.

It is possible to create an architecture based on the quality
architectural drivers.

One way to approach this is to use architectural tactics
and patterns and a method that capitalizes on both.

© 2003 by Carnegie Mellon University page 33

Tactics - 1
The design for a system consists of a collection of design
decisions.
• Some decisions are intended to ensure the achievement

of the functionality of the system.
• Other decisions are intended to help control the quality

attribute responses.
These decisions are called tactics.
• A tactic is a design decision that is influential in the

control of a quality attribute response.
• A collection of tactics is an architectural strategy.

© 2003 by Carnegie Mellon University page 34

Tactics - 2
Tactics bridge quality attribute model and architectural
design
• Modifiability model has concepts such as

“dependency”,
• Tactic translates that into “introduce intermediary” to

break dependency

Quality attribute models may not yet have been articulated
to explain tactics
• Tactics created from bottom up by attribute experts
• Experts have implicit models in their heads
• Suggests models that should be documented and

further explored

© 2003 by Carnegie Mellon University page 35

Performance Tactics
Summary of performance tactics

© 2003 by Carnegie Mellon University page 36

Tactics Catalog
Tactics have been defined for the following quality
attributes:
• Performance
• Availability
• Maintainability
• Usability
• Testability
• Security

Others are in the works.

© 2003 by Carnegie Mellon University page 37

Attribute Driven Design
The Attribute Driven Design (ADD) method is an approach
to defining a software architecture by basing the design
process on the quality attributes the software has to
achieve.
It follows a recursive decomposition process where, at
each stage in the decomposition, tactics and architectural
patterns are chosen to satisfy a set of quality scenarios.

© 2003 by Carnegie Mellon University page 38

What Is Architecture-centric
Development?

Architecture-centric development involves
• Creating the business case for the system
• Understanding the requirements
• Creating or selecting the architecture
• Documenting and communicating the

architecture
• Analyzing or evaluating the architecture
• Implementing the system based on the

architecture
• Ensuring that the implementation

conforms to the architecture
• Maintaining the architecture

The architecture must be both
prescriptive and descriptive.

© 2003 by Carnegie Mellon University page 39

Importance of Architecture
Documentation
Architecture documentation is important if and only if
communication of the architecture is important.
• How can an architecture be used if it cannot be

understood?
• How can it be understood if it cannot be

communicated?
Documenting the architecture is the crowning step to
creating it.
Documentation speaks for the architect, today and 20
years from today.

© 2003 by Carnegie Mellon University page 40

Seven Principles of Sound
Documentation
Certain principles apply to all documentation, not just
documentation for software architectures.

1. Write from the point of view of the reader.
2. Avoid unnecessary repetition.
3. Avoid ambiguity.
4. Use a standard organization.
5. Record rationale.
6. Keep documentation current but not too current.
7. Review documentation for fitness of purpose.

© 2003 by Carnegie Mellon University page 41

View-based Documentation
An architecture is a very complicated construct and its
almost always too complicated to be seen all at once.
Software systems have many structures or views.
• No single representation structure or artifact can be the

architecture.
• The set of candidate structures is not fixed or

prescribed: architects need to select what is useful for
analysis or communication.

A view is a representation of a set of system elements and
the relations associated with them.

Documenting a software architecture is a matter of
documenting the relevant views, and then adding
information that applies to more than one view.

© 2003 by Carnegie Mellon University page 42

Which Views are Relevant?
Which views are relevant? It depends on
• who the stakeholders are
• how they will use the documentation.

Three primary uses for architecture documentation
• Education - introducing people to the project.
• Communication - among stakeholders.
• Analysis - assuring quality attributes.

© 2003 by Carnegie Mellon University page 43

What Is Architecture-centric
Development?

Architecture-centric development involves
• Creating the business case for the system
• Understanding the requirements
• Creating or selecting the architecture
• Documenting and communicating the

architecture
• Analyzing or evaluating the architecture
• Implementing the system based on the

architecture
• Ensuring that the implementation

conforms to the architecture
• Maintaining the architecture

The architecture must be both
prescriptive and descriptive.

© 2003 by Carnegie Mellon University page 44

Traditional System Development
Operational descriptions

High level functional requirements
Legacy systems

New systems

a miracle occurs

Specific system architecture
Software architecture

Detailed design
Implementation

A Critical leap!

How do you know if the
architecture
is fit for purpose?

another miracle occurs

© 2003 by Carnegie Mellon University page 45

Why Evaluate Architectures?
All design involves tradeoffs.

A software architecture is the earliest life-cycle artifact that
embodies significant design decisions and tradeoffs.

• The earlier that risks are identified, the earlier that
mitigation strategies can be developed potentially avoid
the risks altogether.

• The earlier that defects are found, the less it costs to
remove them.

© 2003 by Carnegie Mellon University page 46

SEI’s Architecture Tradeoff Analysis
MethodSM (ATAM)SM

ATAM is an architecture evaluation method that
• focuses on multiple quality attributes

• illuminates points in the architecture where quality
attribute tradeoffs occur

• generates a context for ongoing quantitative analysis

• utilizes an architecture’s vested stakeholders as
authorities on the quality attribute goals

© 2003 by Carnegie Mellon University page 47

ATAM Steps

1. Present the ATAM
2. Present business drivers
3. Present architecture
4. Identify architectural approaches
5. Generate quality attribute utility tree
6. Analyze architectural approaches
7. Brainstorm and prioritize scenarios
8. Analyze architectural approaches
9. Present results

© 2003 by Carnegie Mellon University page 48

ATAMSM Phase 1 Steps
1. Present the ATAMSM

2. Present business drivers
3. Present architecture
4. Identify architectural approaches
5. Generate quality attribute utility tree
6. Analyze architectural approaches
7. Brainstorm and prioritize scenarios
8. Analyze architectural approaches
9. Present results

Phase 1

© 2003 by Carnegie Mellon University page 49

ATAMSM Phase 2 Steps
1. Present the ATAMSM

2. Present business drivers
3. Present architecture
4. Identify architectural approaches
5. Generate quality attribute utility tree
6. Analyze architectural approaches
7. Brainstorm and prioritize scenarios
8. Analyze architectural approaches
9. Present results

Recap
Phase 1

Do this

Phase 2

© 2003 by Carnegie Mellon University page 50

QAW
Conceptual Flow of the ATAMSM

Architectural
Decisions

ScenariosQuality
Attributes

Architectural
Approaches

Business
Drivers

Software
Architecture

impacts

Risk Themes

distilled
into

Analysis

Risks

Sensitivity Points

Tradeoffs

Non-Risks

© 2003 by Carnegie Mellon University page 51

When Can the ATAM Be Used?
Early where there is an architecture,
but there is little or no code.

To evaluate alternative candidate
architectures.

To evaluate an existing system prior to
major commitments to upgrade or
replace the system.

???

© 2003 by Carnegie Mellon University page 52

ATAM Benefits
There are a number of benefits from performing ATAM
analyses:
• Clarified quality attribute requirements
• Improved architecture documentation
• Documented basis for architectural decisions
• Identified risks early in the life-cycle
• Increased communication among stakeholders

The results are improved architectures.

© 2003 by Carnegie Mellon University page 53

ATAM Experience

By a Non-SEI Team
•Automotive systems
•Consumer electronics systems

By an SEI Team
•Internal

-user-interface tool
-avionics system
-furnace control system

•Commercial
-engine control systems
-automotive systems
-healthcare information
management system
-financial information
system

•Non-defense Government
-physics models
-water quality models

•Academic
- required part of masters-level
Carnegie Mellon architecture
course

- on software engineering
projects (MSE-Carnegie Mellon

© 2003 by Carnegie Mellon University page 54

Defense-Related ATAM Experience
Completed

Army (Picatinny Arsenal)- Mortar Fire Control Systems
Air Force (SND C2 SPO) -Space Battle Management Core System
Air Force - NATO-Midterm AWACS
NRO/NASA - Space Object Technology Group (SOTG) Reference
Architecture
NASA Goddard - Earth Observing System
JNTF - Wargame 2000
NASA Houston – Space Shuttle Software
Army TAPO – Common Avionics Architecture System

Under way

Army – Future Combat System
Army – FBCB2
Army – Army Training Support System
Navy – DDX
JNIC – MD War

© 2003 by Carnegie Mellon University page 55

Architecture Evaluation Experience
Benefits of early architecture evaluations
• Evaluations using the Architecture Tradeoff Analysis

MethodSM (ATAMSM) uncover an average 20 risks per
two-day evaluation. Experience over a wide range of
domains attributes these risks to
• unknowns (requirements, hardware, COTS)
• side effects of architectural decisions
• improper architectural decisions
• interactions with other organizations that provide

system components
• Evaluations performed by AT&T have resulted in 10%

productivity increase per project

© 2003 by Carnegie Mellon University page 56

Presentation Outline
Background

Software Architecture

Software Architecture Practices

Related Innovative Practices

SEI Software Architecture Support

Conclusion

Discussion

© 2003 by Carnegie Mellon University page 57

Another Challenge
Over the next n years you have m similar systems under
development and mildly (wildly) different development
approaches.

At the same time you have less money to spend, fewer
people to work with, and less time to get the job done.

And oh by the way, the systems are more complex.

© 2003 by Carnegie Mellon University page 58

The Truth is …Few Systems Are Unique

Most organizations produce families of
similar systems, differentiated by features.

© 2003 by Carnegie Mellon University page 59

A Proven Solution

Software
Product

Lines

© 2003 by Carnegie Mellon University page 60

What is a Software Product Line?
A software product line is a set of software-
intensive systems sharing a common, managed
set of features that satisfy the specific needs of a
particular market segment or mission and that
are developed from a common set of core
assets in a prescribed way.

© 2003 by Carnegie Mellon University page 61

How Do Product Lines Help?
Product lines amortize the investment in these
and other core assets:

• requirements and requirements analysis
•domain model
•software architecture and design
•performance engineering
•documentation
• test plans, test cases, and data
•people: their knowledge and skills
•processes, methods, and tools
•budgets, schedules, and work plans
•Software components

Software product lines epitomize strategic reuse.

earlier life-
cycle
reuse

more
benefit

© 2003 by Carnegie Mellon University page 62

The Key Concepts

Use of a
common

asset base
of a related

set of products
in production

© 2003 by Carnegie Mellon University page 63

The Key Concepts

Use of a
common

asset base
of a related

set of products
in production

Scope Definition
Business Case

Architecture Production Plan

© 2003 by Carnegie Mellon University page 64

Organizational Benefits
Improved productivity

by as much as 10x

Decreased time to market (to field, to launch...)
by as much as 10x

Decreased cost
by as much as 60%

Decreased labor needs
 by as much as 10X fewer software developers

Increased quality
by as much as 10X fewer defects

© 2003 by Carnegie Mellon University page 65

Necessary Changes

Organizational Organizational
structure and structure and

personnelpersonnel

ManagementManagement

Business Business
approachapproach

ArchitectureArchitecture

Development Development
approachapproach

The architecture is the
foundation of everything.

© 2003 by Carnegie Mellon University page 66

Product Line Practice
Contexts for product
lines vary widely

• nature of products
• nature of market or
mission

• business goals
• organizational
infrastructure

• workforce distribution
• process discipline
• artifact maturity

 But there are
 universal essential
activities and
practices.

© 2003 by Carnegie Mellon University page 67

A Framework for Software
Product Line Practice
The three essential activities and the descriptions of the
product line practice areas form a conceptual framework
for software product line practice.

This framework is evolving based on the experience and
information provided by the community.

Version 4.0 – in Software Product Lines: Practices and
Patterns

Version 4.1 – http://www.sei.cmu.edu/plp/framework.html

© 2003 by Carnegie Mellon University page 68

Framework
Development

Management

ProductCore Asset
Development

Essential Activities
Architecture Definition
Architecture Evaluation
Component Development
COTS Utilization
Mining Existing Assets
Requirements Engineering
Software System Integration
Testing
Understanding

Relevant Domains

Building a Business Case
Customer Interface Management
Implementing an Acquisition

Strategy
Funding
Launching and Institutionalizing
Market Analysis
Operations
Organizational Planning
Organizational Risk Management
Structuring the Organization
Technology Forecasting
Training

Configuration Management
Data Collection, Metrics,

and Tracking
Make/Buy/Mine/Commission

Analysis
Process Definition
Scoping
Technical Planning
Technical Risk Management
Tool Support

Software
Engineering

Technical
Management

Organizational
Management

Practice Areas

© 2003 by Carnegie Mellon University page 69

Dilemma: How Do You Apply the
29 Practice Areas?
Organizations still have to figure out how to put the
practice areas into play.

29 is a “big” number.

© 2003 by Carnegie Mellon University page 70

How to Make It Happen
Essential Activities

Probe

Software
Engineering

Technical
Management

Organizational
Management

Patterns Case Studies

Practice Areas

Core Asset
Development

Product
Development

Management

Guidance

© 2003 by Carnegie Mellon University page 71

What’s Different About Reuse with
Software Product Lines?
Business dimension

Iteration

Architecture focus

Pre-planning

Process and product connection

© 2003 by Carnegie Mellon University page 72

Software Product Line Strategy in Context

Business/Mission Goals

Process
Improvement

Improved
Architecture

Practices

process
quality

product
quality

process and
product quality

System
(Software)
Strategies Software

Product Lines

© 2003 by Carnegie Mellon University page 73

Software Product Line Strategy in Context

Business/Mission Goals

Process
Improvement

Improved
Architecture

Practices

Software
Product Linesprocess

quality

product
quality

process and
product quality

System
(Software)
Strategies

© 2003 by Carnegie Mellon University page 74

Challenge
Software components are critical to today’s
systems and product lines
BUT the behavior of component assemblies is
unpredictable.

• “interface” abstractions are not sufficiently
descriptive

• behavior of components is, in part, an a priori
unknown

• behavior of component assemblies must be
discovered

The result is costly development and decreased
assurance.

© 2003 by Carnegie Mellon University page 75

A Solution

Predictable Assembly from Certifiable
Components (PACC)

© 2003 by Carnegie Mellon University page 76

Vision

The Vision
Our vision is to provide the engineering methods
and technologies that will enable
• properties of assemblies of components to be

reliably predicted, by construction
• properties of components used in predictions to

be objectively trusted

We refer to the end-state as having achieved
predictable assembly from certifiable components
(PACC)

© 2003 by Carnegie Mellon University page 77

Industrial Demonstration
Customer: ABB Corporate Research Center
Customer Information

• Transforming from heavy industry in power plant equipment to IT
products and services in process automation

Purpose
• First year of collaboration to demonstrate the feasibility of PACC in

substation automation
• Second year of collaboration to demonstrate the feasibility of PACC in

industrial robotics
Problem Being Solved

• Predictable assembly from certifiable components in substation
automation domain

- operator level latency (PECT)
- controller level latency (PECT)
- combined operator-controller latency (PECT2)
and in robotics domain

• Reliability and safety scenarios are under investigation
Status

• Feasibility study for substation automation completed
• Robotics work underway

© 2003 by Carnegie Mellon University page 78

Status
PACC premises were validated on an internal system and through
an ABB Feasibility Study.

PACC became an SEI initiative as of October 2002.

The emphasis of work in 2002-03 is to ready PECT for practitioner
use

•practical automation for building and using PECTs
- conceptual framework of PECT was generalized in and

was more rigorously defined
- specification language (CCL) was defined and tools are

currently being developed
•model checking was introduced for reliability verification
•technical advances in timing and reliability analysis paves the
way to real industry trial, real payoff potential

We are looking for organizations to collaborate with in the
application of this research.

© 2003 by Carnegie Mellon University page 79

Presentation Outline
Background

Software Architecture

Software Architecture Practices

Related Innovative Practices

SEI Software Architecture Support

Conclusion

Discussion

© 2003 by Carnegie Mellon University page 80

SEI Work in Software Architecture :
Enabling Sound Architecture Practices
Starting Points

Quality attribute/
performance
engineering
Software Architecture
Analysis Method
(SAAM)
Security analysis
Reliability analysis
Software Architecture
Evaluation Best
Practices Report
Software architecture
evaluations

Create

Architecture tradeoff
analysis
• attribute-specific
patterns
• architecture
evaluation techniques
Architecture
representation
Architecture
definition
Architecture
reconstruction

Apply/Amplify

• Architecture
Evaluations

• Architecture
Coaching

• Architecture
Reconstructions

• Books
• Courses
• Certificate

Programs
• Acquisition

Guidelines
• Technical Reports
• Web site

© 2003 by Carnegie Mellon University page 81

SEI Software Architecture Curriculum

Six courses
• Software Architecture: Principles and Practices
• Documenting Software Architectures
• Software Architecture Design and Analysis
• Software Product Lines
• ATAM Evaluator Training
• ATAM Facilitator Training

Three certificate programs
• Software Architecture Professional
• ATAM Evaluator
• ATAM Lead Evaluator

In addition
• Architecture Analysis Guidelines for Acquisition

Managers (short tutorial not part of the curriculum)

NEW

© 2003 by Carnegie Mellon University page 82

About the Curriculum
Software professionals can take individual courses
based on specific needs or interests
or complete one or more of the following three
specially designed certificate programs:

• Software Architecture Professional
• ATAMSM Evaluator
• ATAMSM Lead Evaluator

The ATAM certificate programs qualify individuals to
perform or lead SEI-authorized ATAM evaluations.

© 2003 by Carnegie Mellon University page 83

Certificate Program Course Matrix

ATAM Lead Evaluator: 5 Courses & Coaching
Software
Architecture
Professional:
4 Courses

Software
Architecture:
Principles and
Practices

Documenting
Software
Architectures

Software
Architecture
Design and
Analysis

Software
Product
Lines

ATAM
Evaluator
Training

ATAM
Facilitator
Training

ATAM
Coaching

ATAM
Evaluator
2 courses

© 2003 by Carnegie Mellon University page 84

About all the Courses
All of the courses are two-day learning experiences
that involve lectures and exercises.

The materials provided include books and class
lecture slides.

Prerequisites are enforced.

Delivery of the SEI software architecture courses is
scheduled in 2003 at both the SEI Pittsburgh, PA and
Frankfurt, Germany offices.

Any of the courses can also be scheduled for on site
delivery.

© 2003 by Carnegie Mellon University page 85

Associated Texts

Documenting Software
Architectures: Views
and Beyond

Software Architecture in
Practice, 2nd Edition

Evaluating Software
Architectures: Methods
and Case Studies

Software Product Lines:
Practices and Patterns

© 2003 by Carnegie Mellon University page 86

2003 Schedule

18-19
PGH

ATAM
Facilitator
Training

9-10
PGH

15-16
PGH

10-11
EUR

16-17
PGH

20-21
PGH

ATAM
Evaluator
Training

9-10
PGH

15-16
EUR

Software
Product Lines

3-4
EUR

24-25
PGH

Software
Architecture
Design and
Analysis

8 - 9
EUR

25-26
PGH

Documenting
Software
Architectures

2–3
PGH

4-5
EUR
22-23
PGH

23-24
PGH

16-17
PGH

Software
Architecture:
Principles and
Practices

DECNOVOCTSEPTAUGJULJUNMAYAPR2003
Courses

© 2003 by Carnegie Mellon University page 87

SEI Software Product Line Contributions
Practice Integration:

• A Framework for Software Product Line PracticeSM,
Version 4.1, http://www.sei.cmu.edu/plp/framework.html

• Acquisition Companion to the Framework

Techniques and Methods
• product line analysis
• architecture definition – Attribute-Driven Design (ADD)
• architecture evaluation – Architecture Tradeoff Analysis

MethodSM (ATAMSM)

• mining assets – Options Analysis for ReengineeringSM (OARSM)
• Product Line Technical ProbeSM

Book
Software Product Lines: Practices and Patterns

• Practices (Framework, Version 4.0)
• patterns
• case studies

Conferences
SPLC 2004 – Sept 2004

© 2003 by Carnegie Mellon University page 88

Spreading the Software Product
Line Word

Software product line
concepts, practices, and
patterns

Architecture design

Mining assets

Product line analysis

Acquisition Guidelines

Courses
Essentials of Software
Product Lines

Software Product Lines

Attribute-Driven Design

Options Analysis for
ReengineeringSM

Product Line Analysis
Tutorial

Acquisition Executive Tutorial

Book

Reports

Web

© 2003 by Carnegie Mellon University page 89

Presentation Outline
Background

Software Architecture

Software Architecture Practices

Related Innovative Practices

SEI Software Architecture Support

Conclusion

Discussion

© 2003 by Carnegie Mellon University page 90

Architecture Principles
Software architecture is important because it
• provides a communication vehicle among stakeholders
• is the result of the earliest design decisions
• is a transferable, reusable abstraction of a system

Every software-intensive system has a software architecture

Just having an architecture is different from having an
architecture that is known to everyone, much less one that is fit
for the system’s intended purpose.

An architecture-centric approach to development is essential for
high product quality.

A software product line approach is a proven way to build high
quality families of similar systems.

© 2003 by Carnegie Mellon University page 91

The Total Picture

Business/Mission GoalsBusiness/Mission Goals

Process
Improvement

Improved
Architecture

Practices

Software
Product Linesprocess

quality

product
quality

process and
product quality

Improved
Component
Practices

System
(Software)
Strategies

© 2003 by Carnegie Mellon University page 92

The Total Picture

Business/Mission GoalsBusiness/Mission Goals

Process
Improvement

Improved
Architecture

Practices

Software
Product Linesprocess

quality

product
quality

process and
product quality

Improved
Component
Practices

System
(Software)
Strategies

© 2003 by Carnegie Mellon University page 93

Conclusion
Software architecture is critical to product quality.

Software architecture, product line practices, and
predictable component practices hold great potential
for achieving business and mission goals in the
Navy’s software-intensive systems.

© 2003 by Carnegie Mellon University page 94

Linda Northrop
Director
Product Line Systems Program
Telephone: 412-268-7638
Email: lmn@sei.cmu.edu

U.S. mail:
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213-3890

World Wide Web:
http://www.sei.cmu.edu/ata
http://www.sei.cmu.edu/plp

SEI Fax: 412-268-5758

Terry Dailey
Program Integration Directorate
Navy Lead
Telephone: 703-908-8213
Email: etd@sei.cmu.edu

Contact Information

© 2003 by Carnegie Mellon University page 95

Presentation Outline
Background

Software Architecture

Software Architecture Practices

Related Innovative Practices

SEI Software Architecture Support

Conclusion

Discussion

	Advances in the Art of Software Development
	Presentation Outline
	SEI’s Strategic Functions
	SEI and the Community
	Product Line Systems Program
	Our Strategy
	Software Today
	Software Strategies Are Needed
	Focus: Software Architecture
	Presentation Outline
	Software Architecture: Common Ideas
	Our Definition of Software Architecture
	Implications of Our Definition
	Why is Software Architecture Important?
	Requirements Beget Design
	Business/Mission Drivers
	Software System Development
	The Reality About Software Architecture.
	What Is Architecture-centric Development?
	System Qualities and Software Architecture
	Common Impediments to Achieving Architectural Success
	Challenges
	SEI Work in Software Architecture: Maturing Sound Architecture Practices
	Presentation Outline
	What Is Architecture-centric Development?
	Traditional System Development
	Quality Attribute Workshop
	Quality Attribute Workshop Steps
	QAW Benefits and Next Steps
	What Is Architecture-centric Development?
	Creating the Software Architecture
	Tactics - 1
	Tactics - 2
	Performance Tactics
	Tactics Catalog
	Attribute Driven Design
	What Is Architecture-centric Development?
	Importance of Architecture Documentation
	Seven Principles of Sound Documentation
	View-based Documentation
	Which Views are Relevant?
	What Is Architecture-centric Development?
	Traditional System Development
	Why Evaluate Architectures?
	SEI’s Architecture Tradeoff Analysis MethodSM (ATAM)SM
	ATAM Steps
	ATAMSM Phase 1 Steps
	ATAMSM Phase 2 Steps
	Conceptual Flow of the ATAMSM
	When Can the ATAM Be Used?
	ATAM Benefits
	ATAM Experience
	Defense-Related ATAM Experience
	Architecture Evaluation Experience
	Presentation Outline
	Another Challenge
	The Truth is …Few Systems Are Unique
	A Proven Solution
	What is a Software Product Line?
	How Do Product Lines Help?
	The Key Concepts
	The Key Concepts
	Organizational Benefits
	Necessary Changes
	A Framework for Software Product Line Practice
	Framework
	Dilemma: How Do You Apply the 29 Practice Areas?
	How to Make It Happen
	What’s Different About Reuse with Software Product Lines?
	Software Product Line Strategy in Context
	Software Product Line Strategy in Context
	Challenge
	A Solution
	The Vision
	Industrial Demonstration
	Status
	Presentation Outline
	SEI Work in Software Architecture : Enabling Sound Architecture Practices
	SEI Software Architecture Curriculum
	About the Curriculum
	Certificate Program Course Matrix
	About all the Courses
	Associated Texts
	2003 Schedule
	SEI Software Product Line Contributions
	Spreading the Software Product Line Word
	Presentation Outline
	Architecture Principles
	The Total Picture
	The Total Picture
	Conclusion
	Presentation Outline

